
Annex II (to parts 3 and 4) 
Model analysis of the difference between two sorts of mean temperatures, 

(Tm)A = GMT and (Te)g =  Ts ∗ (Aproj/A)0,25 = bolometric mean, 
additionally referred to earth’s moon and earth herself 

 
In order to try and arrive at an appropriately understandable description  of physically 
unusual facts we are not content to use words alone but rather to include model 
analyses, too, wherever possible. So it is with the difference between 2 global  
T-means, which are obtained by different methods. The following example, Figure II.1, 
refers to a model case close enough to reality, consisting of a “celestial stone ball” 
without any horizontal heat transfer on its surface, which circles the sun in 
synchronous rotation thus showing her permanently the same part of its surface. 
Rotation occurs around an axis being vertically oriented to the plane of the orbit. What 
we now want to determine, is the relation τ  = (Tm)A / (Te)g .  

We take from the figure:  ΔAi = Δl∗2π∗yi  and  (ΔAi)proj = Δyi ∗2π∗yi .  
If we now consider Δyi = Δl∗sin α i , we obtain the relation  
v = Δyi /Δl  = sin α i = (ΔAi)proj /ΔAi  
which is to be introduced in the much-cited equation 

(Te,i)4
  = S∗(1- a)/σ  ∗ Aproj /  A      (IX.3, see part 3) 

together with Ts = [S∗(1- a)/σ]0,25 at the sub-solar point, Ps. We thus obtain the 
abbreviated form,  

Te,i  = Ts ∗  (sin α i ) 0,25. 
 

Imagine there were a documented number, n, of (T)A,i ,(i = 1, 2,…, n) resulting from  
in situ T-measurements on the sunlit hemisphere which are allocated to an 
equivalent number of (circular) zones completely covering the hemisphere. Imagine 
furthermore, a researcher was ordered to determine – on the basis of the numerous 
(T)A,i – the area-weighted T-average, i.e. the (Tm)A for the bright hemisphere, by 
following a rule in the form presented by equation (V), putting there A=2π∗R² , i.e. the 
half of a sphere’s surface. 
In case the researcher was detecting now a good correlation between the (T)A,i 
measured and the (Te)i calculated, – thus allowing for (T)A,i ≅  (Te)i – he almost 
certainly would  think to fulfil his task in a merely analytical, unassailable way, as 
follows: 
First, the subdivision into circular zones around Ps has to be made infinitely fine (we 
of course do not mind our imagining an infinite number of measuring stations which 
had to comply with that number theoretically!). Hence we arrive at the integral 
equation (indices now becoming obsolete): 

A∗(Tm)A =   ∫Te dA . 

        A 
This connection has to be seen entirely in analogy to equation (V), which was 
mentioned as a means for determining a MGT on the earth’s ground. 
As indicated above we must now  write Te  = Ts ∗  (sin α  ) 0,25. In order to solve the 
integral,  dA = dl∗2π∗y also has to be formulated as a function of α . Because there 
is             
y = R∗  cos (π /2 – ϕ) = R∗ cos α , and  also dl  = - R∗dα   



 

 
 

 

 

 

 

 

 

 

 

 
 

[resulting from dy = - R∗ sin α ∗  dα  = dl  ∗ sin α ],  
we have to put dA = -2π∗ R² ∗  sin α  dα , thus obtaining 
 

∫Te dA = -2π∗  R²∗  Ts ∫ (sin α  ) 0,25 ∗  cos α  dα     
 

with α  = 0  as the upper limit and α = π /2  as the lower limit of that definite integral. 
By means of the substitution sin α  = u we quickly arrive at  

∫Te dA = 8/5∗π  R²∗Ts . 
Because of A=2π∗R² we eventually get  

       (Tm)A = 4/5 ∗Ts .  
This result has now to be compared with the (Te)g after equation (IX.3): Substituting 
Aproj/ A = π  R² / (2π  R²) = ½  gives us (Te)g  = Ts / 20,25 . So both values calculated 
lead to the quotient 

Figure II.1: Illustration of how to determine an area-weighted temperature mean value  
(Tm)A by referring to a celestial model case sufficiently close to reality. The model consists 
of a planetary stone ball without an atmosphere, which circles the sun in synchronous 
rotation, its rotational axis being assumed as vertically oriented to the plane of the orbit. If 
one looks at one of the circular zones (on the sunlit hemisphere), showing the small width 
Δ l i, it becomes obvious that the angle of inclination, α i , must be the same at any spot 
within that zone. The surface area of the ith zone is ΔAi = Δ l∗2π∗yi. Since we have no 
significant horizontal heat transfer on the globular surface, temperatures on the sunlit 
ground lie in between Ts (at the sub-solar point, Ps) and T = 0 °K on the terminator. The 
latter designation means that great circle which separates the bright hemisphere from the 
dark one. T = 0 °K is, of course, also met on the dark side of the sphere. There are as many 
T-measurements to be taken “in situ” as there are circular zone areas. It is presupposed for 
every circular area i, that the measured T-value corresponds to Te,i = Ts ∗  (sin α i)0.25. 



τ  = (Tm)A / (Te)g  = 0,8 ∗  2¼ = 0,9514. 
In other words, (Tm)A in our model case is about 5 % lower than (Te)g calculated on 
the basis of an overall radiation budget.  
 
But let us first take the moon as one of those examples, (which our model case 
should apply to as a good approximation) by considering the following: (a) The lunar 
rotational velocity relative to the sun is small. It amounts to only ~ 360°/30 days = 12° 
per one day on earth. So the sun walks about 30 times more slowly across the “lunar 
sky” for a certain point on the globular surface than she does on earth. (b) Moon’s 
rotational axis is nearly (but not quite exactly) perpendicular to the S-direction. Both 
circumstances lead to the facts as shown in Figure II.2: So the temperatures on the 
dark hemisphere lie around 100 to 125 K (instead of 0 K like in our model case) thus 
leading to an infrared radiative flux density of only around 14 W/m2 which emerges 
from the dark lunar surface. Hence our Ts-value of 387 K, calculated for the bright 
hemisphere alone, is left practically unaffected.   
 
We had already calculated (Te)g = 325 K = 52 °C for the sunlit hemisphere of the 
moon. Hence an area-weighted mean, (Tm)A, would attain some 325∗0.9514 = 309 K 
= 36 °C, which is not all together satisfactory since only (Te)g has a useful physical 
meaning.  

 
Figure II.2: Temperature cycles on moon’s surface at 3 different spots; one on the equator 
(duration of one cycle: one month) and one at each pole (duration of one cycle: ≈ one year, 
due to a slight inclination of moon’s rotational axis against the ecliptic). T = 387 K means Ts. 
(after K. Bauch et al., Muenster Univ.: „Estimation of lunar temperatures: a numerical model“, 
complemented by Koewius) 
 
In the light of these considerations we should at last dedicate some remarks to the 
earth. First, on the terrestrial surface a horizontal heat exchange (resulting from 
flows of air and ocean waters) takes place to such an extent that regionally 
established annual T-means differ maximally between ~27 °C (in the equatorial 
region) and  



~ – 25 °C (in the polar regions), i.e. we get the difference of ΔT ~ 52 degrees, as an 
order of magnitude. On the moon we meet ΔT ~ 270 degrees as the difference which 
exists between Ts (at the sub-solar point) and T on the terminator (and on the dark 
side of the moon, respectively). Secondly the earth rotates so fast that – within 24 
hours – there is only a difference of some 10 degrees between day and night or an 
amplitude of 5 degrees around MGT = 15 °C according to the “earth fact sheet” of 
NASA. 
So, if we find only a relatively small difference between (Te)g and (Tm)A as in the case 
of the moon, then we are inclined more to set (Te)g equal to (Tm)A in the case of the 
earth. We have, however, yet to clear up the question of a value for (Te)g , which can 
correspond to our (Tm)A on the ground. For this purpose we set a = 0.3 in 

(Te)4
g  = S∗(1- a)/σ  ∗  Aproj /  A   (IX.3), 

which is the official value for the albedo of today’s earth. Secondly we introduce there 
– as the radiating surface –  A = 4 π  ∗R²  (being the whole surface of a sphere in 
accordance with the above discussion). Hence we obtain – together with  
SE = 1367 W/m2 – the much cited value (Te)g = 255 K = - 18 °C. So it is this T-value 
which must be set equal to (Tm)A = MGT which would result from measurements on 
the ground in that fictitious case of reference calling for the total absence of 
greenhouse gases of any kind in the atmosphere. As is well known, it is the natural 
greenhouse effect – based upon CO2 (k* = 280 ppm) and water vapour in the air – 
which transforms a chilly GMT = - 18 °C into life-friendly MGT* = + 15 °C, hence 
rising the global T-mean by ΔT* = + 33 degrees.    
 

Consequently the question arises “Can the difference between the temperatures on 
the equator and at the poles, we quoted above, be also transferred to the fictitious 
case ‘MGT = (Te)g  = - 18 °C’ by simply subtracting ΔT = 33 degrees everywhere on 
the ground? And is there any evidence visible to do so?“ We mean ‘yes’. Since it 
were possible, in the case of CETGs being totally absent, to confirm (Te)g by 
measurements directly on the ground, the attempt seems profitable to calculate 
(according to equation (IX.3)) at least the temperature Te for a narrow equatorial 
zone provided that the sun stands – more or less – directly over the equator. We call 
Δl  the width and  s = 2π∗R   the length of that zone (with R as the radius of the earth 
= 6371 km). Hence we obtain  A = Δl  ∗2π∗R  and  Aproj = Δl  ∗2∗R .  Together with a 
= 0.3 and SE = 1367 W/m² we arrive at   (Te)equator  = 271 K = -2 °C.   And this value 
eventually leads to the difference + 27 °C – (- 2 °C) = 29 degrees (instead of 33). So 
the difference already lies in the right order of magnitude. However we have to 
consider that the value of  
-2 °C (= 271 K) was derived from a calculation which is exactly valid only for the total 
absence of any heat transfer parallel to the planetary surface (in our terrestrial case: 
in the direction towards higher latitudes). This situation may apply to “stone balls” like 
the moon, however by no means the earth and her atmosphere regardless of a mean 
temperature being 29 or 33 degrees lower than a MGT which is met on earth in 
reality. So, in this light, the said -2 °C represents nothing more than an upper limit 
with regard to the equatorial zone (in the fictitious case).  
 


